How Neom, located in the Arabian Peninsula, will provide itself with water
This article is also available here in Spanish.

How Neom, located in the Arabian Peninsula, will provide itself with water

My list

Author | Lucía Burbano

The infrastructures of the smart city NEOM, in Saudi Arabia, are taking shape. Located in one of the most water-scarce regions in the world, NEOM has plans for a sustainable and innovative water management system with the construction of a green hydrogen desalination plant.

NEOM’s ambitious plant to supply the entire region with water

"Change the future of water", that is how NEOM announces its plans to supply the nine million residents that will live in the Saudi Arabian smart city.

NEOM has a specific plan to achieve this: build a state-of-the-art desalination plant with 100% renewable energy obtained from green hydrogen, which will start to produce water by 2024. Located in the industrial zone of Oxagon and built by ENOWA, NEOM’s water and electricity subsidiary, in collaboration with ITOCHU and Veolia, it will function with a high-recovery reverse osmosis system.

The desalination plant with a 500,000 m3 per day capacity, will meet approximately 30 percent of NEOM’s forecasted total water demand. The production capacity of the desalination plant in NEOM will be 2,000 megawatts, which is ten times the largest planned production facility in Europe.

Gavin van Tonder, Executive Director of Water at NEOM, explains that NEOM’S water will be 100 per cent desalinated using renewable energy to ensure zero CO2 emissions as well as zero brine effluent discharge to the sea.

"The entire cycle will be the first of its kind in the world as the process is based on a circular economy model. It will also be the first time in the world that mineralized water is supplied that is the same quality as spring water to facilities and homes, with the aim of eliminating the need for bottled water."

The Arabian Peninsula, a region where water is scarce

The Arabian Peninsula is one of the most water-scarce regions in the world, with limited fresh water sources and high levels of water demand. Also known as Arabia, it is the largest peninsula in the world. With 3,237,500 square kilometers distributed across seven countries, it has over 77.9 million inhabitants.

The lack of water in the region is due mainly to natural factors, including limited rainfall and high temperatures, but also human activities such as overexploitation of underground water resources and inefficient irrigation practices.

Saudi Arabia is characterized by a desert climate with average annual rainfall in most of the country below 150 mm throughout the entire year, except in the southwestern part of the country, where average annual rainfall ranges between 400 and 600 mm. It is the tenth most water-stressed country in the world.

How will the NEOM desalination plant work

A desalination plant separates salt from seawater to convert it into water suitable for human consumption and industrial and irrigation uses through two types of processes: thermal or membrane systems.

In the first process, saline water is heated to produce water vapor, which is then condensed to produce freshwater. The second, and the one that will be used in NEOM, transfers water through semi-permeable membranes, which allows the salt to be separated from the water. It will use reverse osmosis, which applies mechanical pressure, to counteract the natural osmotic pressure to filter the water to obtain a lower concentration of salts.

NEOM’s desalination plant will also use advanced and innovative technologies to obtain concentrated flows of brine to convert the salt into a product and no longer waste. This will minimize the plant’s environmental impact and redefine the business model of future desalination plants.

Brine generated from the desalination plant will be treated by ENOWA to feed industries utilizing high purity industrial salt, bromine, boron, potassium, gypsum, magnesium and rare metals as raw materials.

It will also incorporate a smart network that will include water flow, water volume, temperature, water quality and pressure management zones.

Photos | NEOM

Related content

Recommended profiles for you

MM
Mathilde Marengo
IAAC
Head of Studies
LR
Lucia Ribas
LL Real Estate
Representative, manager.
AE
Arno A, Evers
Arno A. Evers
Operator
GB
Gabriel Bracamontes
Ebiosmart
Project director
MY
Masayuki Yasufuku
Japan Lighting Manufacturers Association
General Manager of International Affairs Division
AS
Andrés Sierra Pulgarín
universidad de Antioquia
im student of urban engeneering and i very interesting to learn all about smart city and future city
OK
Omkar Kharade
Omkar Sales
Student
AD
Alex D\'Elia
PROSUME
President
IB
Isabel Borrás Almela
Ajuntament de Viladecans
Advertising Communication responsable
PW
PERCY WEISS
COMISION AMBIENTAL DE MIRAFLORES
MEMBER OF THE ENVIROMENT COMITTE
LD
Leandro De Büren
Consultor
In the center Republica Argentina
DC
Dmytro Cheshkivskyi
Kyiv Smart City
Head of the International Relations Department
MM
Mar Martinez
EIT InnoEnergy/ KU Leuven
Postdoc researcher
SZ
Stefania Zerbato
Smartea Srl
Amministratore
JP
Josep Perello
Bettair Cities
CEO
SD
Sony Diantara
Barata Indonesia
General Manager of Industrial Component & Machinery Division
JC
Janet Castro
Euroaula
Teacher
PS
Peter Stewart
Resource Economist Ltd
Director
SS
Sergio Sánchez
BR
Project Manager
AC
Angel Canton
Comunitelia Comunicaciones
Director Estrategico y planificacion