¿Qué es la energía azul? Luces y sombras de una tecnología prometedora

¿Qué es la energía azul? Luces y sombras de una tecnología prometedora

My list

Autor | Jaime Ramos

Adaptarnos a la naturaleza y no adaptar la naturaleza a nosotros. Esta es una de las máximas que ha motivado la imprescindible, en nuestros tiempos, apuesta por las energías renovables. Una revolución que pretende que dejemos de ignorar que nuestro planeta ofrece múltiples alternativas para aprovechar sus flujos energéticos, ya sea a través del calor que existe bajo nuestros pies o del potencial por descubrir en los océanos. La denominada energía azul bebe de esta última idea.

En apenas dos siglos la revolución industrial trajo consigo una perniciosa dependencia de los combustibles fósiles de la que ahora pretendemos escapar. El 75% de la energía mundial proviene del petróleo, el gas o el carbón. En el otro extremo de esta balanza que trata de evitar el desastre climático se trabaja por dar con soluciones de gran calibre. Es en este contexto donde se encuentra la energía azul.

¿Qué es la energía azul?

Planta de energía azul en Noruega

La base de la energía azul se ubica en el límite que separa los ríos de los océanos. Es en esos puntos en los que existe una gran diferencia en términos de salinidad acuática. ¿Cómo se puede generar energía a partir de este fenómeno? La clave reside en el aprovechamiento de la presión osmótica. Esta saca partido químico a las diferencias en la salinidad presentes en dos grandes masas de agua. Un recurso natural lo suficientemente potente como para impulsar una turbina y generar una gran cantidad de energía eléctrica.

Pese a que de su descubrimiento pasan ya más de 50 años, la energía azul, a efectos de producción real, es una energía renovable muy joven. Y es que no fue hasta 2009 cuando comenzó a funcionar la primera planta experimental en Tofte (Noruega).

¿Es la energía azul sostenible?

Uno de los mayores beneficios de las energía azul es que el único elemento residual que deriva de su explotación es agua salobre. Es decir, no presenta emisiones de ningún tipo a la atmósfera.

Su funcionamiento efectivo supondría un hito de sostenibilidad casi imbatible. Podría convertirse en una vía de escapa para paliar el efecto de las emisiones de CO2. Los científicos cuantifican que antes de la revolución industrial los niveles de este gas en la atmósfera equivalían a 228 partes por millón (ppm). En el año 2018 se alcanzaba una media de 407,8 y en mayo de 2019 se logró el dudoso récord de las 415 ppm.

¿Cómo se puede explotar?

corriente de agua

El mayor obstáculo para la energía azul lo constituyen los métodos para obtenerla. Hasta la fecha, las tecnologías desarrolladas, aunque prometedoras, han terminado por demostrarse no muy eficaces.

Es lo que ocurrió, precisamente, en la mencionada planta de Tofte. Utilizaba un proceso conocido como ósmosis retardada que se topó con la presencia de grandes concentraciones de bacterias. Estas poblaban la membrana empleada para aprovechar la presión osmótica, taponando las salidas del agua y frustrando el rendimiento del sistema.

En la actualidad se trabaja sobre un nueva fórmula que en realidad es la fusión de dos: la electrodiálisis inversa y la mezcla capacitativa. Se fundamenta en la creación de una celda electroquímica (una batería) que genera electricidad partiendo de los flujos de energía libres entre agua dulce y salada. Los proyectos en ciernes muestran un gran potencial. Se ha cuantificado que podrían generarse más de 12 vatios por cada metro cuadrado.

Esta cifra lleva a los expertos a realizar estimaciones muy optimistas. Calculan que la energía azul podría satisfacer hasta el 40% de la demanda eléctrica mundial. Un pronóstico casi imaginario y de complicada viabilidad. Sin embargo, no deja de alimentar la esperanza de la salvación climática que nos ofrece el océano.

El futuro de la separación del agua… ¿y la clave para el hidrógeno limpio?

El hidrógeno lleva postulándose como un vector energético limpio desde hace décadas. Pero a pesar de su enorme potencial, las cuentas no salen. Su obtención desde hidrocarburos es la más rentable pero también resulta contaminante en origen, y así como la energía solar podría suponer una buena forma de separar las moléculas de oxígeno e hidrógeno sin añadir emisiones a la atmósfera, el proceso es tan ineficiente que no tiene sentido.

La energía azul podría ser una posible solución a este dilema. Varios estudios señalan la capacidad para crear una electrolisis limpia usando el gradiente salino con una membrana bipolar como elemento principal, lo que permitiría una elevadísima eficiencia en la conversión. Y con ello, el comienzo de la auténtica economía del hidrógeno.

Imágenes | iStock/Algefoto, Bjoertvedt (Own work, CC BY-SA 3.0), iStock/AlexLMX

Related content

Recommended profiles for you

JV
Jorge Vásquez
Fundación Grupo HTM
Research
DP
David Pacheco
Cetaqua
Project Communications Manager
RS
Reyes Salinas González
Generalitat Valenciana
Technical project management
AV
Alejandro Villada
Colvibra SAS
CEO
SD
Sastry V R S Duvvuri
DV&M Assocites
Director
BB
Ben Burda
Barleti University, Tirana, Albania
Lecturer, coordinator for CityLABs ( www.citylab.al )
GG
Gerardo Garavito
VISION INGENIERIA SAS
CEO
JR
Josep Maria Ruiz Boqué
AIRTIFICIAL CW INFRASTRUCTURES S.L.
South America Business Development Director
SD
Steve Davey
Sensor Drive Technology
Managing Director
FF
fgh fgh
fsfdf
ghm
BC
Bruna Castro
Rodrigues rios Arquitetura
Architect
AP
Akshay Parel
Voltigent Company
Owner
MM
Maribel Marquez
QC EPWMD
Sanitation Inspector
MV
Maarit Vehviläinen
City of Tampere
Project Manager, Smart Tampere, STARDUST
AJ
Aaquil Jawed
The Loudspeaker
President/Founder
MS
Marco Scamuzzi
Nion
Founder/Administrator
ÖÖ
Özge Önenli
ENGIE
BtoT Coordinator
PL
Paulo Lourador
CEO
Sustentabilidade
ML
Marcos Lowi
Colegio Roosevelt
DA
David Aragones
Fundación Agreste
Adviser